If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/4x^2+19=300
We move all terms to the left:
1/4x^2+19-(300)=0
Domain of the equation: 4x^2!=0We add all the numbers together, and all the variables
x^2!=0/4
x^2!=√0
x!=0
x∈R
1/4x^2-281=0
We multiply all the terms by the denominator
-281*4x^2+1=0
Wy multiply elements
-1124x^2+1=0
a = -1124; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-1124)·1
Δ = 4496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4496}=\sqrt{16*281}=\sqrt{16}*\sqrt{281}=4\sqrt{281}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{281}}{2*-1124}=\frac{0-4\sqrt{281}}{-2248} =-\frac{4\sqrt{281}}{-2248} =-\frac{\sqrt{281}}{-562} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{281}}{2*-1124}=\frac{0+4\sqrt{281}}{-2248} =\frac{4\sqrt{281}}{-2248} =\frac{\sqrt{281}}{-562} $
| 8x=−4x+15 | | 14-14q=-14q+12 | | -7.2(x-2.5)=21.7 | | c-34/8=6 | | 10-15n=-15n | | 5x+-7=2x+2 | | 6x–3=3x+12 | | -9k=-12-9k | | -q+10=-10+2q-10 | | 9p–5p=20 | | 7-9y=-8y | | -2-5v=-4v+7 | | 9c-7=8c | | 11+6x-14=15x-3 | | 12+3-19=2x | | 8.7x-2.7=58.2 | | 1.3(8−b)+3.7b=−5.2 | | p(4)=8 | | y=√25-2 | | 3/4y-14+12-2/3y=40 | | 14=1/2w | | 3a+12=2a+16=6a+10 | | n÷2+7=3 | | 45-b=-37 | | 3t=-8{,}163 | | 8x+25=7x+45 | | 40x^2-56x+16=0 | | x=2x(-3)+10 | | 14.75+x=50.45 | | 180=4x+10-5+3x+18x | | 80=4x+10-5+3x+18x | | 15=5+k |